Neural/Fuzzy Computing Based on Lattice Theory
نویسنده
چکیده
Computational Intelligence (CI) consists of an evolving collection of methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks and fuzzy systems. Lately, a unification was proposed in CI, at a “data level”, based on lattice theory (Kaburlasos, 2006). More specifically, it was shown that several types of data including vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was proposed for knowledge representation and modeling based on lattice theory with emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, which has emerged historically from the conventional measurement process of successive comparisons. It is known that (R,≤) gives rise to a hierarchy of lattices including the lattice (F,≤) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map (Kohonen, 1995), as well as an extension of conventional fuzzy inference systems (Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned extensions include both a capacity to rigorously deal with nonnumeric input data and a capacity to introduce tunable nonlinearities. Rule induction is yet another advantage.
منابع مشابه
Unified Analysis and Design of ART/SOM Neural Networks and Fuzzy Inference Systems Based on Lattice Theory
Fuzzy interval numbers (FINs, for short) is a unifying data representation analyzable in the context of lattice theory. This work shows how FINs improve the design of popular neural/fuzzy paradigms.
متن کاملFuzzy lattice neural network (FLNN): a hybrid model for learning
This paper proposes two hierarchical schemes for learning, one for clustering and the other for classification problems. Both schemes can be implemented on a fuzzy lattice neural network (FLNN) architecture, to be introduced herein. The corresponding two learning models draw on adaptive resonance theory (ART) and min-max neurocomputing principles but their application domain is a mathematical l...
متن کاملFUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE
This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کامل